COMPUTER SCIENCE (B.S.)

The Bachelor of Science in Computer Science provides students a rigorous curriculum beginning with a thorough grounding in a set of core subjects that are intended to develop problem solving ability and provide a basic understanding of fundamentals of computing and information processing, including operating systems design and administration, computer networking and database systems. Students, through a choice of electives, may deepen their knowledge and understanding in some rapidly evolving disciplines, including how to design and build software in software engineering, how to develop effective ways to solve global challenges using artificial intelligence, machine learning, and robotics programming, and how to create better ways of using computer with an understanding of cybersecurity and data analysis. The anticipated end result is a set of graduates who are prepared for their chosen scientific career in the field of computing, be it graduate school or employment.

Integrative Studies Requirements

Minimum 40 credits

Code	Title	Credits	Completed	
Major Requirements (58-66 credits)				
Core Requirements:				
ISCS-140	Programming	4	$\underline{ }$	
	Foundations I			
CS-185	Programming	4	$\underline{ }$	
	Foundations II			
CS-265	Computer	4		
	Architecture			
CS-280	Data Structures \&	4		
	Algorithms			
CS-355	Computer	4		
	Networks			
CS-360	Database	4		
	Systems			
ISCS-150	Website Design \&	4		
	Construction			
or INCS-160	Microcomputer Sy			
CS-215	OS	4		
	Administration			
or CS-320	Operating Systems			
CS-293	Supervised Field	2	$\underline{ }$	
	Experience			
or CS-493	Adv Supervised Field Experienc			
Select one of the following:		4	$\underline{ }$	
ISCS-210	Python Programming		$\underline{ }$	
CS-225	C++ Programming			
CS-290	Special Topics (with department approval)			
Mathematics Requirements:			$\underline{\square}$	

MATH-111

	Algebra (may be waived by CS Department chair)		
MATH-112	Precalculus (may be waived by CS Department chair)	4	-
MATH-135	Discrete Mathematics for CS	4	-
MATH-211	Calculus I MATH-141Introductory Statistics (*recommended but not required)	4	-
Calculus II (*recommended but not required)		-	
MATH-212			

Upper-Level Requirements:
Select three of the following; two
must be 400 -level courses:

IICS-350	Cybercrime	
IIPHYS-342	Data Analysis for Scientists	
CS-375	Software	

CS-375	Software	
	Engineering	
CS-395	Mobile	
	Device App	
	Programming	

CS-420	E-Commerce Development	-
CS-430	Principles Program Languages	-
CS-455	Crypt \& Network Security	-
CS-490	Advanced Special Topics	-
CS-495	Al \& Robotics	-
CS-498	Independent Study	$\mathbf{6 6}$
Total Credits		

It is strongly recommended for students to consider participating in either CS-297 Internship or CS-497 Advanced Internship.

Electives

Select courses to reach a total of 120 credits for the degree.

Degree Requirements

120 credits
40 credits at the upper-level

Upon completion of the Computer Science

B.S. degree, students will be able to:

- Demonstrate software development skills in at least one computer programming language through the commonly accepted level of data structures.
- Demonstrate understanding of fundamental data structures and algorithms.
- Demonstrate an introductory understanding of computer architecture and/or operating systems other than Microsoft Windows (currently Linux, Unix or iSeries).
- Demonstrate understanding in fundamental mathematical concepts in order to be competent computer scientists
- Demonstrate technical skills in completing mathematical processes.
- Demonstrate software development skills in at least one other computer programming language not taught in item 1 above.

